
Classical Models of Computation (that helped inspire quantum model) · Circuit (usual classical model) · Reversible (b/c unitaries are reversible) · Probabilistic (b/c measurements are probabilistic)
Circuit - way of describing functions on bits Set of all 3-bit strings e.g. {0,152 = {00,01,10,115}} And function X, X, X, X, X, X, X, X, X, X
Gate ex: XI D-XI NX2 X-D-TX XI D-XI NX2 X-D-TX XI D-XI VX2 X-L-X AND NOT OR FANGUT Not technically recess for universality, but use Gate Set is universal, can compute any f: \{0,1\}^n \rightarrow \{0,1\}^n
Generalized Boolean Function
Circuits provide way of determining how difficult it is to compute a function Measures of circuit complexity:
"Gate count = # gates used "Depth = # time steps (depends on parallelization) Want to Milnimize . Width / Size = max # wires present at a time Ex find circuit that implements function f: {0,13" > {0,13" > {0,13" } {0,13" } {0 otherwise . What is gate count, depth, with ?

SKIMMEL

Reversible

$$X_1$$
 Y_2 Y_3 Y_4 Y_5 Y_6 Y_6

(only I output bit for 2 input bits - information must have been destroyed)

Claim: Toffoli Gate is universal

ex: AND using Toffoli

* cost: extra input bit

Al. Use Taffoli, to create NOT, FANOUT, OR

Note: for reversible circuits, # wires in = # wires out

* Can make any classical circuit reversible using Toffoli.

Cost: increased # of wires

Probabilistic Computation

Deterministic Bit: X=0 or X=1

Probabilistic Bit: P(0) = .75 P(1)=.25

Probability of 1 Probability of O

Store Info about probabilities in vectors

1-bit;

Together

(p(0)) = (.75)

(p(0)) = (.75)

(p(0)) = (.5)

(p(0)) = (.75)

(p(0)) = (

Quantum Correlation:

1 (0)

Classical Correlation:

 $\frac{1}{2}\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$ (Both bits have same value: $P(08) = P(11) = \frac{1}{2}$)

are can't be formed by combination of 2 independent bits

Probabilistic n-bit State

Za;=1 just vector

Probability of string i is a;

Transform using left stochastic

(preserves positivity & normalization)

Quantum N-bit State $\sum_{i \in \{0,1\}^n} a_i \in C$ $\sum_{i \in \{0,1\}^n} a_i = 1$

If measure in standard basis,
Probability of outcome is is

19:12

Transform using unitary
Matrix U: U'U=UN+=I

(preserves normalization)

Probabilistic Gate

Left Stochastic Matrix (columns sum to 1, non-negative entries)

These matrices

$$6X: \left(\begin{array}{cc} 1/5 & 1 \\ 1/5 & 0 \end{array}\right) \left(\begin{array}{cc} 5(i) \\ 6(0) \end{array}\right) : \left(\begin{array}{cc} 1/5 & 6(0) - b(1) \\ 1/5 & 0 \end{array}\right)$$