
CS333 - Problem Set 2
Due: Wed, Feb 28

1. [0 points - (Optional, if want basic practice)] Decide whether each of the following
vectors could represent a qubit state. If not, find a real number such that multiplying the
vector by the number will create a valid quantum qubit state.

(a)

(
eiξ cos(θ)
e−iφ sin(θ)

)
(b) 1

2 |0〉+
√

2
3 |1〉

2. [0 points - (Optional, if want basic practice)] Does the following represent a valid qubit
measurement? Why or why not?

M =
{√

1/3|0〉+ i
√

2/3|1〉,
√

2/3|0〉+ i
√

1/3|1〉
}

(1)

3. Let M = {|φ0〉, |φ1〉} be an orthonormal basis representing a qubit measurement, and let |ψ〉
be a vector representing a qubit quantum state.

(a) [6 points] There exist α0, α1 ∈ C such that |ψ〉 = α0|φ0〉 + α1|φ1〉. Show that |α0|2 +
|α1|2=1.

(b) [3 points] Suppose we measure |ψ〉 using M . Let p0 be the probability of outcome |φ0〉
and let p1 be the probability of outcome |φ1〉. Use part (a) to show that p0 + p1 = 1,
that is, the sum of the outcome probabilities is 1.

(c) [3 points] What does this problem tell you about quantum measurements and quantum
states? (In other words, why did I have you do this problem?)

4. Let |ψ〉 be a vector representing a qubit quantum state. Let |ψ′〉 = eiφ|ψ〉 for φ ∈ R.

(a) [3 points] Show that |ψ′〉 also represents a qubit state.

(b) [3 points] Show that any measurements give exactly the same outcome statistics and
states on |ψ〉 and |ψ′〉.

(c) [3 points] Is it possible to tell the difference between |ψ〉 and |ψ′〉? What does this
mean? What is the significance of this problem?

5. [6 points] The Bloch sphere is a useful tool for visualizing single qubit states. In the last
problem, we saw that a global phase has no effect on the state. Using this degree of freedom,
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along with with normalization condition, we can parameterize all single qubit states using
two parameters:

|ψ(θ, φ)〉 =

(
cos θ
eiφ sin θ

)
(2)

where θ ∈ [0, π/2] and φ ∈ [0, 2π).

Now the surface of a sphere is parameterized by the polar angle θ ∈ [0, π] and the azimuthal
angle φ ∈ [0, 2π). Thus there is a one-to-one correspondance between a single qubit states
and points on the surface of the sphere: we identify the state |ψ(θ/2, φ)〉 with the point on the
sphere with polar angle θ and azimuthal angle φ, as in the following diagram. (Important:
the θ in Eq. (2) is not the same as the θ in the figure of the sphere; they differ by a factor of
2, so be careful of this when moving from one represenation to another. However, θ’s are the
same in the equation and figure.)

You can verify that the vector ẑ (north pole direction) corresponds to |0〉, and −ẑ (south
pole direction) correspons to |1〉. What states do the vectors x̂, ŷ, −x̂, and −ŷ correspond to?
(ŷ is 90◦ from x̂ on the equator.) What is the absolute value of the inner product squared of
any two states that are at 90◦ from each other? 180◦ from each other?

6. [6 points] Using kets, bras, or other linear algebraic representations of quantum states and
measurements please describe what possible events might occur, and calculate the probability
of those events in the following scenario:

• Alice prepares a horizontally polarized photon and sends to Bob.

• Eve intercepts the photon and has it pass through a vertically polarized filter before
trying to detect the photon. If she detects a photon, she prepares a vertically polarized
photon to send to Bob, and otherwise, she sends Bob a horizontally polarized photon.

• Bob measures the photon he received from Eve by putting a right diagonally polarized
filter in front of his photon detector.

7. (* = challenge) Let θ be a fixed, known angle. Suppose someone flips a fair coin and,
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depending on the outcome, either gives you the state

|0〉 or cos θ|0〉+ sin θ|1〉 (3)

(but does not tell you which). Describe a qubit measurement for guessing which state
you were given, succeeding with as high a probability as possible. Also indicate the success
probability of your procedure. (You do not need to prove that your procedure is optimal.)

8. How long did you spend on this homework?
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