
CS333 - Problem Set 10
Due: Wednesday, May 7nd before class

See final page for hints.

1. In class, we showed how to create a quantum error correcting code that protected against an
error of the form X on any of the three qubits. Show that this code also protects against any
error that is a rotation about the x̂ axis of the Bloch sphere. That is, an error of the form:

Xθ = cos(θ)I + i sin(θ)X =

(
cos(θ) i sin(θ)
i sin(θ) cos(θ).

)
. (1)

To do this, consider the error correcting circuit we looked at in class:

A
•

B
• •

C
•

|0〉

|0〉

(2)

(a) [6 points] Suppose that an error Xθ occurred on the qubit A before running the error
correction scheme. So the effective circuit with error is

A
Xθ •

B
• •

C
•

|0〉

|0〉

(3)

If the input state to the circuit in Eq. (19) is a|000〉ABC + b|111〉ABC , what are the pos-
sible measurement outcomes of the final two qubits, and what does the system collapse
to in the case of each possible outcome? (Please analyze the circuit above, rather than
using projective measurements.)

(b) [6 points] Depending on the measurement outcome, what should you do to recover the
state a|000〉+ b|111〉 on system ABC?
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(c) [6 points] The calculation is similar if Xθ occurs on B or C. What are the possible
measurement outcomes in each case, and how should you correct the error based on
the measurement outcome? (You do not need to do any calculations, just state what
happens and what you should do, given the results of part a/b, and the analysis we did
in class.)

(d) [6 points] Explain why you don’t have to know θ in order to correct the error. Why is
the collapse helpful? What is going on here?

2. [This problem has a fair amount of calculation. However, the end result is pretty
cool - I think! Also it is good practice.] In this problem, we consider the same bit flip
code as before: a|0〉 + b|1〉 is encoded as a|000〉 + b|111〉, which we have seen is protected
against X-rotations on a single qubit. We have so far only considered the case where exactly
one qubit has been affected by a unitary error. A more realistic error model is that small
rotations affect all of the qubits at any time step. Consider an error model where the error is
the unitary Xθ from question 1 acting in parallel on all 3 qubits in the code:

X⊗3
θ (4)

(a) [6 points] If the logical qubit is initially in the state a|000〉 + b|111〉 for a, b ∈ R, (this
just makes the calculations simpler), what is the state of the logical qubit after this
error has occurred? (That is, calculate X⊗3

θ (a|000〉+ b|111〉). You can keep your answer
undistributed if that is easier.)

(b) [6 points] Consider the projective measurement:

M = {P0 = |000〉〈000|+ |111〉〈111|, P1 = |100〉〈100|+ |011〉〈011|,
P2 = |010〉〈010|+ |101〉〈101|, P3 = |001〉〈001|+ |110〉〈110|}. (5)

Use the projective measurement formalism (rather than the ancillas used above) to
analyze the probability that P0 and P1 each occur, and how the state collapses in each
case (the case of P2 and P3 will be similar to P1).

(c) [6 points] If outcome P0 occurs, what gate should you apply to “fix” the error, and
what does the state become in this case? If outcome P1 occurs, what gate should you
apply to “fix” the error, and what does the state become in this case?

(d) [6 points] Even though we don’t get back our original state a|000〉+ b|111〉, the states
that we do recover are extremely close to a|000〉 + b|111〉 when θ is small. To see this,
consider a measurement M = {|φi〉} where |φ0〉 = a|000〉 + b|111〉. If we measure a
state |ψ〉 with the measurement M , the higher the probability of getting outcome |φ0〉,
the closer |ψ〉 is to |φ0〉, and the harder it is to distinguish between |ψ〉 and |φ0〉. (We
can’t actually make this measurement without knowing what a and b are...so this is
just a thought experiment to see how well the error correction works.) Calculate the
probability that we get outcome a|000〉 + b|111〉 if we were to measure each of the
post-error-correction states (the states from part 2c). Use a Taylor expansion to get
an expression for the probability in terms of the lowest power of θ. (You can use the
Mathematica function “Series” to do this expansion, or it is fun to do by hand if you
like this sort of thing! Mathematica should be on any campus PC lab computer.)
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(e) [6 points] What is the success probability from the previous problem (still using a
Taylor series expansion) if we average over the probability of getting outcome P0, P1,
P2 and P3. (Use the probabilities you found in 2b.)

(f) [6 points] On the other hand, find the probability of getting outcome a|000〉+ b|111〉 if
no error correction had been performed after the error. Discuss.
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Hints!

1. (a) The state before the partial measurement is

cos(θ) (a|000〉+ b|111〉) |00〉+ i sin(θ) (a|100〉+ b|011〉) |10〉. (6)

2. (a)

(b) Prob of P0 is cos6 θ + sin6 θ, and state becomes

(a cos3 θ − ib sin3 θ)|000〉+ (b cos3 θ − ia sin3 θ)|111〉√
cos6 θ + sin6 θ

. (7)

Prob of P1 is sin2 θ cos2 θ and state becomes

(ai cos θ − b sin θ)|100〉+ (bi cos θ − a sin θ)|011〉) (8)

(c)

(d) Take the probabilities you found in part d, weighted by the corresponding probabilities
you found in part b. (Don’t forget a factor of 3 for the three outcomes P1, P2, P3. You
can assume they are all the same by symmetry!)
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