(CS333 - Final Review

1. Consider the following two-qubit state:
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(a) [3 points] If you measure the first qubit of |1)) using the basis {|0), |1)}, what is
the probability of getting outcome |0)?

(b) [3 points] If you get outcome |0) on the first qubit, what state will the second
qubit collapse to?

(¢) [3 points] If you measure the first qubit of |¢)) using the basis {|+),|—)}, what
is the probability of getting outcome |0)?

(d) [3 points] If you get outcome |+) on the first qubit, what state will the second
qubit collapse to?

Solution

(a) We can rewrite |¢) as
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Then we can normalize the state that the second qubit is in if the first qubit is in
|0) as
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Thus the probability of outcome |0) is \/Lg X % =5/6.
(b) Reading off of the previous equation, we see the second qubit is left in the state
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(c) We can rewrite the state as
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So the probability of getting |+) is 1/6.
(d) The second qubit will be left in the state |+).

2. Suppose you have a function f : {0,1}" — {0,1}", where f(x)
(Here & means addition mod 2 for each bit of

if © = y®s for some s € {0,1}".

= f(y) if and only

the string.) Otherwise, there is no structure in terms of which input gets assigned

to which output. Recall for standard basis states: H®"|x)

=Y

1)*¥|y), where

Ty = Z?:l x;y; where x; is the jth bit of  and y; is the jth bit of y.

(a) What is the classical query complexity of determining s7

(b) Suppose you have a unitary that acts as Uy|z)|0) =

|z)| f(z)). (For this algorithm,

it doesn’t matter how U; acts on other standard basis states.) If we run the

following algorithm:

0)

0
0

m A (6)

| |
[v2)  [3) |ta)

What are the states at each point?

(c) If you can find O(n) (randomly chosen) z such that z - s = 0 mod 2, then can
figure out s. Use this fact to determine the quantum query complexity of learning

S.

Solution

(a) We need to find an pair {z,y} such that f(z)

= f(y).

We might have to look

at half of the inputs before we find such a pair, so the query complexity is O(2")
(since the total number of inputs is 2™.)
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Suppose we measure b. Then there are exactly two inputs x;, and 1, such that
flan) = f(y) =b,and z =y, & s
1

|1h3) = 7

(We drop the B system from here forward.)
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If s-2 =1 mod 2, then we have zero amplitude on that |z), so we will never
measure it. Thus we will only measure |z) such that s- 2z =0 mod 2.

(c) By repeating this process O(n) times, we will obtain a set of bit strings that have
inner product 0 with s, and then we can determine s.

3. I said that there is a similar code to the 3-qubit bit-flip code we looked at in class that
corrects Z errors. The idea is to convert from the |0)/|1) view to a |+)/|—) view, since
|[+)/|—) are sensitive to Z errors, but the approach otherwise should be similar to the
3-qubit bit-flip code.

(a) Draw a circuit that encodes a qubit a|0) + b|1) into a 3-qubit state that corrects
against Z errors. (Your circuit should use standard gates like H, CNOT), etc.)

(b) Show how to detect Z errors using two ancillary qubits, control operations, and a
measurement of the ancillary qubits.

(c) What is the projective measurement that your circuit in part (b) accomplishes?
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Solution

(a) We first write the initial state in the |+), |—), basis:

al+) +6]-),

(11)

where a = \%(a +b) and a = \/ii(a —b). Now we would like to create the state

al+ 4+ +) + B|— — —) because then if a Z error occurs on one qubit, we can do
a majority vote among + and — to detect and correct. To do this, we want to
append 2 qubits in the state |+), and then if our initial qubit is in the state
|—), we want to flip these qubits to also be in the state |—). In other words,
we want to apply the operation |[+)+| ® I 4+ |—)—| ® Z. This is the same as
(H® H)YCNOT(H ® H). Thus our full circuit is

al+)+8l-) | Hl—s—HHH}——{H}
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We again attach two ancillary qubits, but instead of wanting to flip the target
when the control has value |1), we want to flip when the control has value |—),
so we apply H only on the control qubits around the CNOT. This results in the

following circuit (the input is o+ + +) 450 + Bl— — =) ac)-
A
— H }——{H] (13)
B
|Hf——{H{H}——{H]
C
(H ]+ H]—
10) D b 4
10) S s> A
(¢) The projectors of our effective measurement are
Py = |+ ++)++++] ==X ——|
Pr=| =)=+ |+ =) =
Py= |4+ —+)+ -+ + | —+=X—+ -]
Py= |+ 4K+ —| | = —f— = + (14)



Hints on 1:
e (a®b)-c=a-c+b-c mod 2.

e There should be two standard basis states in superposition after the measurement of
the second register.

Hints on 2:

e Convert the initial state to |[+)/|—) basis. Then think about how you can convert the
|+) into |4+ + +) and the |—) into |- — —) similarly to what we do in the bit-flip case.



