
CS333 - Final Review

1. Consider the following two-qubit state:

1√
3

(|0〉|+〉+ |−〉|1〉) (1)

(a) [3 points] If you measure the first qubit of |ψ〉 using the basis {|0〉, |1〉}, what is
the probability of getting outcome |0〉?

(b) [3 points] If you get outcome |0〉 on the first qubit, what state will the second
qubit collapse to?

(c) [3 points] If you measure the first qubit of |ψ〉 using the basis {|+〉, |−〉}, what
is the probability of getting outcome |0〉?

(d) [3 points] If you get outcome |+〉 on the first qubit, what state will the second
qubit collapse to?

Solution

(a) We can rewrite |ψ〉 as

|ψ〉 =
1√
3

(
|0〉|+〉+

1√
2

(|0〉 − |1〉)|1〉
)

=
1√
3

(
|0〉
(

1√
2
|0〉+

2√
2
|1〉
)

+ |1〉|something〉
)

(2)

Then we can normalize the state that the second qubit is in if the first qubit is in
|0〉 as

|ψ〉 =
1√
3

(√
5√
2
|0〉

(√
2√
5

(
1√
2
|0〉+

2√
2
|1〉
))

+ |1〉|something〉

)
(3)

Thus the probability of outcome |0〉 is
∣∣∣ 1√

3
×
√
5√
2

∣∣∣2 = 5/6.

(b) Reading off of the previous equation, we see the second qubit is left in the state

√
2√
5

(
1√
2
|0〉+

2√
2
|1〉
)

(4)
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(c) We can rewrite the state as

|ψ〉 =
1√
3

(
1√
2

(|+〉+ |−〉)|+〉+ |−〉|1〉
)

=
1√
6
|+〉|+〉+ α|−〉|something〉 (5)

So the probability of getting |+〉 is 1/6.

(d) The second qubit will be left in the state |+〉.

2. Suppose you have a function f : {0, 1}n → {0, 1}n, where f(x) = f(y) if and only
if x = y ⊕ s for some s ∈ {0, 1}n. (Here ⊕ means addition mod 2 for each bit of
the string.) Otherwise, there is no structure in terms of which input gets assigned
to which output. Recall for standard basis states: H⊗n|x〉 =

∑2n−1
y=0 (−1)x·y|y〉, where

x · y =
∑n

j=1 xjyj where xj is the jth bit of x and yj is the jth bit of y.

(a) What is the classical query complexity of determining s?

(b) Suppose you have a unitary that acts as Uf |x〉|0〉 = |x〉|f(x)〉. (For this algorithm,
it doesn’t matter how Uf acts on other standard basis states.) If we run the
following algorithm:

|0〉 H

Uf

H

|0〉 H H
...

|0〉 H H

|0〉n

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

(6)

What are the states at each point?

(c) If you can find O(n) (randomly chosen) z such that z · s = 0 mod 2, then can
figure out s. Use this fact to determine the quantum query complexity of learning
s.

Solution

(a) We need to find an pair {x, y} such that f(x) = f(y). We might have to look
at half of the inputs before we find such a pair, so the query complexity is O(2n)
(since the total number of inputs is 2n.)
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(b)

|ψ1〉 =
1

2n/2

∑
x∈{0,1}n

|x〉|0〉. (7)

|ψ2〉 =
1

2n/2

∑
x∈{0,1}n

|x〉|f(x)〉. (8)

Suppose we measure b. Then there are exactly two inputs xb and yb such that
f(xb) = f(yb) = b, and x = yb ⊕ s

|ψ3〉 =
1√
2

(|xb〉+ |yb〉)|b〉. (9)

(We drop the B system from here forward.)

|ψ4〉 =
1√
2
× 1

2n/2

∑
z∈{0,1}n

(−1)xb·z|z〉+ (−1)yb·z|z〉

=
1√
2n+1

∑
z∈{0,1}n

((−1)xb·z + (−1)yb·z)|z〉

=
1√
2n+1

∑
z∈{0,1}n

((−1)xb·z + (−1)(xb⊕s)·z)|z〉

=
1√
2n+1

∑
z∈{0,1}n

((−1)xb·z + (−1)xb·z+s·z)|z〉

=
1√
2n+1

∑
z∈{0,1}n

(−1)xb·z(1 + (−1)s·z)|z〉. (10)

If s · z ≡ 1 mod 2, then we have zero amplitude on that |z〉, so we will never
measure it. Thus we will only measure |z〉 such that s · z ≡ 0 mod 2.

(c) By repeating this process O(n) times, we will obtain a set of bit strings that have
inner product 0 with s, and then we can determine s.

3. I said that there is a similar code to the 3-qubit bit-flip code we looked at in class that
corrects Z errors. The idea is to convert from the |0〉/|1〉 view to a |+〉/|−〉 view, since
|+〉/|−〉 are sensitive to Z errors, but the approach otherwise should be similar to the
3-qubit bit-flip code.

(a) Draw a circuit that encodes a qubit a|0〉+ b|1〉 into a 3-qubit state that corrects
against Z errors. (Your circuit should use standard gates like H, CNOT , etc.)

(b) Show how to detect Z errors using two ancillary qubits, control operations, and a
measurement of the ancillary qubits.

(c) What is the projective measurement that your circuit in part (b) accomplishes?
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Solution

(a) We first write the initial state in the |+〉, |−〉, basis:

α|+〉+ β|−〉, (11)

where α = 1√
2
(a + b) and α = 1√

2
(a − b). Now we would like to create the state

α|+ + +〉 + β|− − −〉 because then if a Z error occurs on one qubit, we can do
a majority vote among + and − to detect and correct. To do this, we want to
append 2 qubits in the state |+〉, and then if our initial qubit is in the state
|−〉, we want to flip these qubits to also be in the state |−〉. In other words,
we want to apply the operation |+〉〈+| ⊗ I + |−〉〈−| ⊗ Z. This is the same as
(H ⊗H)CNOT (H ⊗H). Thus our full circuit is

α|+〉+ β|−〉 H • H H • H

|+〉 H H

|+〉 H H

(12)

(b) We again attach two ancillary qubits, but instead of wanting to flip the target
when the control has value |1〉, we want to flip when the control has value |−〉,
so we apply H only on the control qubits around the CNOT. This results in the
following circuit (the input is α|+ + +〉ABC + β|− − −〉ABC).

A
H • H

B
H • H H • H

C
H • H

|0〉

|0〉

(13)

(c) The projectors of our effective measurement are

P0 = |+ ++〉〈+ + +|+ | − −−〉〈− − −|
P1 = | −++〉〈−+ +|+ |+−−〉〈+−−|
P2 = |+−+〉〈+−+|+ | −+−〉〈−+−|
P3 = |+ +−〉〈+ +−|+ | − −+〉〈− −+| (14)
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Hints on 1:

• (a⊕ b) · c ≡ a · c+ b · c mod 2.

• There should be two standard basis states in superposition after the measurement of
the second register.

Hints on 2:

• Convert the initial state to |+〉/|−〉 basis. Then think about how you can convert the
|+〉 into |+ + +〉 and the |−〉 into |− − −〉 similarly to what we do in the bit-flip case.
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