
CS333 - Pre Class Math

1 Complex Numbers

A complex number is written as a + bi, where a, b ∈ R and i =
√
−1. It is useful to think

about complex numbers as points on a plane:

If x = a + bi, then the complex conjugate of x, denoted x∗, is a − bi. If w and x are
complex numbers, then

(wx)∗ = w∗x∗

(w + x)∗ = w∗ + x∗ (1)

Question: If we think of complex numbers as points on a plane, and conjugation as a
function that takes a complex number to its conjugate, how does the operation of conjugation
transform points on a plane?
Solution: It acts as a reflection over the x-axis (the real axis). (A reflection flips points
over an axis of reflection.)

For w ∈ R, Euler’s formula is the following:

eiw = cos(w) + i sin(w). (2)

This formula lets us use a complex exponential to represent a complex numbers.
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Question: If w ∈ R, which of the following is the complex conjugate of eiw?

e−iw, cos(w)− i sin(w), − cos(w) + i sin(w), ew (3)

Solution: e−ix and cos(x)− i sin(x)

If x = a + bi, we denote the magnitude of x as |x|, where |x| =
√
xx∗.

Question: Explain why |eix| = 1 twice, using each side of Euler’s formula and the definition
of magnitude. (For the left hand side, you’ll also need properties of products of exponentials,
and for the right hand side, you’ll also need properties of trigonometric functions.)
Solution: First, we have |eix| =

√
eixe−ix =

√
eix−ix =

√
e0 =

√
1 = 1. Then, we also have

|eix| = | cos(x) + i sin(x)| =
√

(cos(x) + i sin(x))(cos(x)− i sin(x)) =
√

cos2(x) + sin2(x) =√
1 = 1.

Question: What is a simpler expression for ei3π/2, and where does it appear as a point on
the plane?
Solution: ei3π/2 = −i, and it is the a point on the negative y-axis a distance 1 from the
origin.

2 Vector Spaces

We will deal with vector spaces Cd. Cd is the set of column vectors of length d (dimension
d) whose elements are complex numbers. So for example 1

i
e2i

 ∈ C3. (4)

If x ∈ Cd, then the conjugate transpose of x, denoted by x†, is the d-dimensional row
vector where the jth element of x† is the complex conjugate of the jth element of x. For
example, if

x =

 1
i
e2i

 then x† =
(

1, −i, e−2i
)
. (5)

More generally, if you have a matrix A, then A† denotes the conjugate transpose of A,
where you take the transpose of the matrix, and then take the complex conjugate of each
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element. For example

(
1, 2, 3
−1i, −2i, −3i

)†
=

 1, 1i
2, 2i
3, 3i


Given vectors x,y ∈ Cd, we can take the inner product y†x by doing matrix multiplication

between y† and x. That is: y†x =
∑d

i=1 y
∗
i xi, where xi is the ith element of x and yi is the

ith element of y. For example, if x is as above, and y =

 i
1 + i

2

, then

y†x =
(
−i, 1− i, 2

) 1
i
e2i

 = −i× 1 + (1− i)× i + 2× e2i = −i + i + 1 + 2e2i

= 1 + e2i. (6)

Question: If x =

(
1
i

)
and y =

(
1
−i

)
, what is y†x? What is x†y?

Solution: y†x = x†y = 0.

Question: If x,y are any vectors in Cd, explain why
(
y†x
)∗

= x†y.
Solution: Using the rules for adding and multiplying complex numbers, we have

(
y†x
)∗

=

(
d∑
i=1

y∗i xi

)∗
=

d∑
i=1

(y∗i xi)
∗ =

d∑
i=1

(y∗i )
∗ (xi)

∗ =
d∑
i=1

yix
∗
i = x†y. (7)

Question: Show that the inner product follows the distributive property. That is, if x,y, z ∈
Cd, explain why z† (x + y) = z†x + z†y.
Solution: Using the definition of inner product, we have

z† (x + y) =
d∑
i=1

z∗i (xi + yi) =
d∑
i=1

z∗i xi + z∗i yi =

(
d∑
i=1

z∗i xi

)
+

(∑
j∈d

z∗j yj

)
= z†x + z†y.

(8)

A basis for a vector space Cd is a set of vectors {v1, . . .vd} such that for every vector
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x ∈ Cd, there is a unique set of complex numbers {a1, . . . , ad} such that

x =
d∑
j=1

ajvj. (9)

If you have a set of d vectors {v1, . . .vd} each in Cd such that

v†jvk =

{
1 if j = k

0 if j 6= k,
(10)

then they form a basis for Cd. We call such a basis an orthonormal basis.
For example you can verify that:

v1 =
1√
2

(
1
i

)
, v2 =

1√
2

(
1
−i

)
(11)

from an orthonormal basis for C2 because there are two of them, and they satisfy Eq. (10).
In quantum computing, we will exclusively deal with orthonormal bases.

Given a vector x ∈ Cd, it is often helpful to write that vector in terms of a given
orthonormal basis {v1, . . .vd}. In other words, we would like to find the complex numbers
aj as in Eq. (9). When {v1, . . .vd} is an orthonormal basis, finding this decomposition is

fairly straightforward. We can apply v†i to both sides of equation Eq. (9):

v†ix = v†i

(
d∑
j=1

ajvj

)

=
d∑
j=1

ajv
†
ivj

= ai (12)

where the second line comes from the distributive property, and the final line comes from
Eq. (10).
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Question: Consider the orthonormal basis {v1,v2} for C2 where v1 = 1√
2

(
1
1

)
and

v2 = 1√
2

(
1
−1

)
. Write x = 1√

2

(
1
i

)
in this basis. (In other words, write x = a1v1 + a2v2

for some complex numbers a1 and a2.)
Solution: We have

v†1x =
1

2
(1 + i)

v†2x =
1

2
(1− i) (13)

so

x =
1

2
(1 + i)v1 +

1

2
(1− i)v2. (14)

Let Cn×m denote the set of matrices with n rows and m columns and complex elements.
Let A ∈ Cn×m and B ∈ Cp×q. Then the tensor product (technically the Kronecker product)
of A and B is denoted by A⊗B. If the element in the ith row and jth column of A is Aij,
then

A⊗B =


A11B, A12B, . . . A1mB
A21B, A22B, . . . A2mB

...
...

...
...

An1B, An2B, . . . AnmB

 .

For example,

(
1, 2, 3
−1, −2, −3

)
⊗

 0
1
i

 =


1

 0
1
i

 , 2

 0
1
i

 , 3

 0
1
i


−1

 0
1
i

 , −2

 0
1
i

 , −3

 0
1
i



 =


0 0 0
1 2 3
1i 2i 3i
0 0 0
−1 −2 −3
−1i −2i −3i

 .

Question: If A is an n ×m matrix and B is a p × q matrix, what are the dimensions of
A⊗B?
Solution: A⊗B will be an np×mq matrix. This is because we will have m copies of B in
the horizontal direction, and since each copy of B itself takes up q columns, the new matrix
will have mq columns. Then in the vertical direction, there are n copies of B, and each copy
has p rows, for np total rows.
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The tensor product has the following properties:

A⊗ (B + C) = A⊗B + A⊗C (15)

(B + C)⊗A = B⊗A + C⊗A (16)

(A⊗B)† = A† ⊗B† Note! the order stays the same! (17)

(A⊗B) · (C⊗D) = A ·C⊗B ·D, (18)

where · denotes regular matrix multiplication.

Question: Consider the orthonormal basis {v1,v2} for C2 where v1 = 1√
2

(
1
1

)
and

v2 = 1√
2

(
1
−1

)
. Show that {v1 ⊗ v1,v1 ⊗ v2,v2 ⊗ v1,v2 ⊗ v2} is an orthonormal basis

for C4.
Solution: Using the definition of tensor product, we have that

{v1 ⊗ v1,v1 ⊗ v2,v2 ⊗ v1,v2 ⊗ v2} =


1

2


1
1
1
1

 ,
1

2


1
−1
1
−1

 ,
1

2


1
1
−1
−1

 ,
1

2


1
−1
−1
1




(19)

You can check that Eq. (10) is satisfied by these vectors, and since there are 4 of them, they
form an orthonormal basis for C4.
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Question: In this problem, we’ll show that the previous problem generalizes. Suppose we
have an orthonormal basis {v1, . . . ,vd} for Cd, and an orthonormal basis {u1, . . . ,uf} for
Cf . Show that the set of vectors consisting of all possible pairs of tensor products vi ⊗ uj
form an orthonormal basis, and say which space they form a basis for. (Use the tensor
product properties!)
Solution: Since there are d vectors in the first set and f vectors in the second set, the
number of possible pairs of vectors is df . Now if we take the inner product of two of the
vectors, we have, using Eq. (17)

(vi ⊗ uj)
† · (vk ⊗ ul) = (v†i ⊗ u†j) · (vk ⊗ ul). (20)

Using Eq. (18), we have

(v†i ⊗ u†j) · (vk ⊗ ul) = (v†ivk)⊗ (u†jul). (21)

Because {v1, . . . ,vd} and {v1, . . . ,vf} are orthonormal bases, we will get terms that are
either 0⊗ 0 = 0, 0⊗ 1 = 0, 1⊗ 0 = 0 or 1⊗ 1 = 1. The only time we get 1 is when i = k and
j = l, which is when we take the inner product of a basis vector with itself, and otherwise
we get 0. Note that these vectors are elements of Cdf , so since they fulfil Eq. (10), they form
an orthonormal basis for Cdf .
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