
CS302 - Problem Set 3
Please read the sections of the syllabus on problem sets and honor code before starting this

homework.

1. Please write a formal proof for the correctness of the closest points algorithm using strong
induction. This problem is entirely about proving correctness - you do not need to analyze
the time complexity. You should combine all of the pieces we discussed in class into a proof
that is easy to read and understand. You may use figures (pictures) in your proof, but you
should clearly explain what is happening in the figure using full English sentences. The goal
of this problem is to clearly and concisely explain complex mathematical/algorithmic ideas in
English. I would recommend typing your proof so that it is easy to make edits. You should
not turn in the first version you write - make sure you reread and make changes for clarity
and correctness. For reference, my proof is about a page typed. In your proof, please refer
to the following algorithm:

ClosestPair(P) (where P is an array containing x-coordinates and y-coordinates of n points,
where no two points have the same x- or y-coordinate.)

Step 1: If |P | ≤ 3 use brute force search and return closest distance.

Step 2: Sort by x-coordinate into sets L and R

Step 3: δ = min{ClosestPair(L), ClosestPair(R)}
Step 4: Create Yδ, an array of points within δ of midline between L andR, sorted by y-coordinate.

Step 5: Loop through elements of Yδ, and calculate distance from each point to next 7 points,
keeping track of δ′, the smallest distance found.

Step 6: Return min{δ, δ′}

2. In class, we’ll show that without a bit of cleverness, the recurrence relation for the runtime
of the closest points algorithm is

T (1) = O(1), T (n) = 2T (n/2) +O(n log n), (1)

but after some cleverness, we get a recurrence relation of

T (1) = O(1), T (n) = 2T (n/2) +O(n). (2)

(a) [6 points] What is the best bound possible on the first recurrence relation if we use the
master method? Explain.

(b) [6 points] Use the same strategy as we used to create the master method to analyze
the first recurrence relation. Use big-O notation to bound your result. (See final page
for some helpful reminders if you are getting stuck.)

(c) [3 points] Now use the master method to analyze the second, improved recurrence
relation. How much of an improvement did our cleverness get us?

1

3. For each of the following statements, if it is true, prove it, and if it is false, provide a coun-
terexample and explanation.

(a) [11 points/6 points] If a line graph has at least two vertices, the minimum-weight
vertex is never part of the maximum-weight independent set.

(b) [11 points/6 points] Considering the dynamic programming algorithm for MWIS on
a line graph, if a vertex is excluded from the optimal solution of two consecutive sub-
problems, then it is excluded from the optimal solution to the final problem.

4. Approximately how long did you spend on this assignment (round to the nearest hour)?

2

For problem 2, recall that log(ab/c) = log(a)+ log(b)− log(c). Also log(2k) = O(k). Also,
(log a)2 6= 2 log(a). (The true equality is that log(a2) = 2 log(a). Finally, you will probably
want to look up the formula for evaluating an arithmetic series.

3

