(CS302 - Programming Assignment 2: Huffman Compression

Motivation

Compression is one of the most important tools in computer science and is also one of the most
fundamental ideas in information science. The idea is to take some data, compress (encode) it
into fewer bits for storage or transmission, and then decompress (decode) the data to its original
form (or very close to its original form) at a later point. Huffman Coding is one of the best ways
to encode because it is lossless (you can always recover the original data from the compressed
data exactly), optimal (you can’t compress the data beyond what Huffman codes can do without
additonal information about the data), and easy to encode and decode. We will cover the analysis
of Huffman Coding in class as part of our study of greedy algorithms.

Guidelines
Please read and abide by the honor code guidelines in the syllabus.

Please read the rubric so you know how you will be graded. For example, turning in a program
that compiles and runs without errors but does nothing will earn you more points than a program
that is close to working but does not compile or contains errors on running.

There are two options for this assignment: Standard and Challenge. (You must turn in only
one of the two options.) You will be graded using this rubric. Since the rubric is out of 30 points,
if you earn X points, then your grade will be X/30 x .85 for a Standard assignment and X /30 x .95
for Challenge. Thus a poorly done Challenge program could give you a worse score than a well
executed Standard program.

Put a multi-line comment at the beginning of your program. It should contain:

e Your name
e “Programming Assignment 2”
e “Challenge” or “Standard”

e The name of anyone you worked with and the nature of your collaboration

Standard Assignment

Write a class called Huffman in java that has a method encode that takes as parameters a .txt file
containing lower case English letters and spaces, and outputs two .txt files. One should contain
the Huffman encoding of the file (where the letter frequencies should be based on the original file),
and one should contain information on how the file was encoded. Your second file should look
something like this:

a: 01

b: 1001


http://www.cs.middlebury.edu/~skimmel/Courses/200S19/syllabus.html#HC
http://shelbykimmel.com/Documents/Teaching/Templates/ProgramGrading.pdf
http://shelbykimmel.com/Documents/Teaching/Templates/ProgramGrading.pdf

[space]: 111

Challenge Assignment
Complete the standard assignment. Next create a method decode that takes as input the output

of encode and recovers the original text. Finally, create a method createTree that takes in the
decoding file, and outputs a visualization of the binary tree corresponding to that decoder. You
should feel free to use external packages such as JGraphX, etc for the visualization.



