
Name

CS200 - Midterm Review Questions

1. All of the following questions are regarding the closest points in 2D algorithm.

(a) What if we changed the Closest Points algorithm to, in the combine step, use a
region within 2δ of the midline. Would the algorithm still be correct? How would
our analysis change?

(b) If we used a region within δ/2 of the midline, would our algorithm be correct?

(c) What if, in our analysis of points in the region within δ of the midline, we created
imaginary squares that are δ × δ large. How would our analysis change?

(d) What if we imagined squares that are δ/3× δ/3 large?

(e) Why is it important to presort the arrays?

(f) Why do we need to maintain separate arrays sorted by X and Y coordinates?

Solution

(a) The algorithm would still be correct, because any two closest points with one
point in left half and one point in right half would be in this region (otherwise,
the two points would have distance greater than δ, a contradiction). However,
when we divide this region into δ/2× δ/2 boxes, there would now be 8 boxes in a
row, so there would be 16 boxes in the two relevant rows. Therefore, in our loop,
we would need to check the next 15 points.

(b) The algorithm would not be correct, because we would miss points that could be
split amongst the left and right half, but have distance less than δ.

(c) Now there could be at most 4 points in the box (put 4 points at each corner, and
5th point would have distance to one of the existing points of less than δ/

√
2, a

contradiction). But we would only need to consider one row of boxes, because
other rows would contain points more that distance δ away if our initial point is
on the top edge of the box. Thus there are two boxes where relevant points are,
each with at most 4 points, so we would need to check the next 7 points (same as
before!)

(d) If we did the analysis with δ/3× δ/3 boxes, we would still only be able to fit one
point in each box (why? what is the largest distance between two points in the
box?) but now there are 18 relevant boxes (3 rows, with 6 boxes in each row -
draw a picture!) so with this analysis, we should check the next 17 points.

(e) Presorting the arrays allows us to divide into left/right halfs, and create the y-
sorted array of points around the midline efficiently.

(f) Ditto

1

2. Prove the following algorithm is correct.

Algorithm 1: Maximum(A, s, f, x)
Input : Array A of unique integers. Start index s and final index f .
Output: Maximum value in array.

1 if f − s == 0 then
2 return A[s];
3 end
4 g = b(s+ f)/2c;
5 m1 =Maximum(A, s, g);
6 m2 =Maximum(A, g + 1, f);
7 return max{m1,m2};

Solution We will use a proof by strong induction. Let P (n) be the predicate that
Maximum is correct for an array of size f − s. We will prove P (n) is true for all n ≥ 0,
n ∈ Z.

Base case: when n = 0, we have f = s, so there is only one element of interest, so
it must be the maximum. Indeed, we see that the algorithm returns A[s] when f = s.

Inductive step: assume for strong induction that P (r) is true for all k ≥ r ≥ 0.
We will prove P (k + 1) is true. Since k + 1 ≥ 1, we go to the inductive step. Since
g = b(s + f)/2c, we have 0 ≤ g − s < k + 1, and 0 ≤ f − (g + 1) < k + 1. Thus,
by our inductive assumption, the recursive calls return the maximum elements in the
left and right halves of the array respectively. Since the maximum value of the whole
array is the largest value in either half, we should return the maximum of those two
values, which the algorithm does. (Could be more mathematical and use the definition
of maximum, but I think that is not necessary here. It is pretty obvious.)

Therefore, using strong induction, P (n) is true for all n ≥ 0, n ∈ Z.

3. Probability Questions

(a) Review Quiz

(b) If you have a coin that has 1/4 probability of heads and 3/4 probability of tails,
what is the sample space if you flip it n times? What is the expected number of
heads? (Use indicator random variables).

(c) Problem 2b from the homework, but what if there are two elements with value x
in the array?

(d) Explain why the probability of comparing zi and zj in Randomized QuickSort is
2/(|j − i|+ 1)

Solution

2

(a) The sample space is equivalent to all possible strings of length n made up of the
letters H and T , corresponding to all possible sequences of heads and tails that
might result. Let Xi be the indicator random variable that takes value 1 if the
ith flip is heads, and zero otherwise. Then if X is the total number of heads
X =

∑n
i=1Xi. Using linearity of expectation, we have

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

Pr(ith toss is heads) =
n∑

i=1

1

4
=
n

4
. (1)

(b) Let X be the random variable that is the number of rounds. Let Xk be the
indicator random variable that takes value 1 if round k occurs. Then

E[X] =
∞∑
k=1

E[Xk] =
∞∑
k=1

Pr(kth round occurs) (2)

Now the probability that the kth round occurs is the probability that we have
not found the item we are searching for before the kth round, which is(

n− 2

n

)k−1

. (3)

Thus

E[X] =
∞∑
k=1

(
n− 2

n

)k−1

=
∞∑
k=0

(
n− 2

n

)k

=
1

1− n−2
n

=
n

2
. (4)

(c) Items only get compared if one is the pivot, and the other is in the section of the
array in that recursive call. As long as the pivot is chosen to be zk where k < i or
k > j, then zi and zj move together in a recursive call. So something interesting
only happens when the pivot is either chosen to be zi or zj, or is chosen to be
zk with i < k < j. In the later case, zi and zj are split into different recursive
calls and so are never compared. In the former, they do get compared. Because
there is equal probability of any of the points from zi to zj being chosen, there is
a 2/(|j − i|+ 1) probability that zi or zj is chosen from among this set, in which
case, they are compared.

3

