
CS302 - Problem Set 3
Due: Monday, Oct 2. Must be uploaded to Canvas before the beginning of class.

Please be familiar with the sections of the syllabus on problem sets and honor code before
starting this homework. You may also want to look at the grading rubrics.

1. 3-D Closest Points Continued [6 points]
In this problem, you will analyze the runtime of the algorithm for CP 3D from last week’s
problem set. Use recurrence relations and a proof similar to our proof of the master method
to argue that the runtime of of the algorithm on n points is O(n log2 n). (Recall log2 n =
(log n)2.) You may assume that the asymptotic runtime of CP Almost2D on a set of n points
is O(n log n)

2. Master Method [6 points]
When solving divide and conquer algorithms, things can get messy when the input size n is
not a power of b, where n/b is the size of the subproblems solved by the recursive calls. Our
in-class proof of the master method assumed that n is a power of b. In this problem, you will
show that this assumption can be dropped. Argue that the master method gives the same
asymptotic scaling whether the problem size is n = bk, or n′ = bk+1. This result shows that
if our input is not originally a power of b, we can increase the size of the input (for example,
by padding with zeros) to the next largest power of b without affecting the complexity of the
algorithm.

3. More Master Method

Suppose you have devised three different divide and conquer algorithms to solve the same
problem:

• Algorithm I: Divides the problem into three subproblems that are each a quarter of
the size of the original problem. It uses linear time to combine the solutions to the
subproblems.

• Algorithm II: Divides the problem into 2 subproblems that are each 2/3 the size of the
original problem. It uses constant time to combine the solutions to the subproblems.

• Algorithm III: Divides the problem into 9 subproblems that are each a third the size of
the original problem. It uses quadratic time to combine the solutions to the subproblems.

(a) [6 points] For each algorithm, give the asymptotic complexity using big-O notation.

(b) [6 points] State which of the algorithms you would use to solve an instance of this
problem.

4. QuickSort

Most of you should have covered QuickSort in 201. If you’ve forgotten, please review your
notes. Try not to look at pseudocode - if you do, take some time in between looking at it

1



and trying to recreate it yourself. You may find it helpful to work back and forth between
creating the proofs and writing the pseudocode. Also, feel free to be a bit looser with your
pseudocode. Use more English if that is easier. For example, writing “swap two elements of
an array” is simpler than giving the mathematical description with a temporary value, etc.

(a) [9 points] Write pseudo-code for Partition.

(b) [11 points] Prove using a loop invariant that your algorithm for Partition is correct.

(c) [0 points - do this if you need the practice] Write pseudo-code for QuickSort using
your Partition subroutine. Please make the pivot the first element of the part of the
array in question.

(d) [0 points - do this if you need the practice] Prove your algorithm for QuickSort

is correct.

2


