CS200 - Programming Assignment 1: Computer Assisted Proofs

Motivation

As you’ve seen, proving things mathematically can be difficult. A current active field of research at
the intersection of computer science and mathematics involves using computers to help find proofs.
While some work is being done to use Al techniques to write proofs in the way a human does, most
computers are used to do “proof by exhaustion,” which is when a computer tries all possible cases
of interest. For example, for a proof of the Pythagoeran triples problem, a computer had to check
a trillion different cases (which took 2 days on a supercomputer). When a proof is created with
the help of a computer, we call it a “computer-assisted proof.”

In this programming assignment, you will write a program to help with a computer-assisted
proof. Your program will take as input a complex predicate involving several variables, which is the
thing we are trying to prove is true. You program will deduce what assignments of the variables
make the statement true. I suggest your program use a “proof by exhaustion” approach by testing
all possible values of the variables.

Guidelines
Please read and abide by the honor code guidelines in the syllabus.

Please read the rubric so you know how you will be graded. For example, turning in a program
that compiles and runs without errors but does nothing will earn you more points than a program
that is close to working but does not compile or contains errors on running.

There are two options for this assignment: Standard and Challenge. (You must turn in only
one of the two options.) You will be graded using this rubric. Since the rubric is out of 30 points,
if you earn X points, then your grade will be X/30 x .85 for a Standard assignment and X /30 x .95
for Challenge. Thus a poorly done Challenge program could give you a worse score than a well
executed Standard program.

You may use any functions, methods, or packages that you find useful (for example, in python
eval and in java parseBoolean may be helpful), and you may use code snippets that you find on,
for example, Stack Overflow, but you may not use code that effectively implements the solution.
I expect that you will have to figure out some new tools (like eval or parseBoolean) to do this
assignment, and I expect you to do some web searching to find them and learn how to use them.

Put a multi-line comment at the beginning of your program. It should contain:

e Your name

e “Programming Assignment 1”

“Challenge” or “Standard”

The name of anyone you worked with and the nature of your collaboration

Sample output from your program


https://www.nature.com/news/two-hundred-terabyte-maths-proof-is-largest-ever-1.19990
http://www.cs.middlebury.edu/~skimmel/Courses/200S19/syllabus.html#HC
http://shelbykimmel.com/Documents/Teaching/Templates/ProgramGrading.pdf
http://shelbykimmel.com/Documents/Teaching/Templates/ProgramGrading.pdf

e The amount of time (approximately) that you spent on this assignment

Standard Assignment
Write a program in python or java that takes as input a string that consists of a single predicate
involving the variables “A”, “B”, and “C”, and the operators ‘and’, ‘or’, and ‘not’, as well as
parentheses. Your program should output a list of assignments of of the variables “A”, “B”, and
“C” that cause the predicate in the input to be true. If the predicate only contains the letters “A”
and “B”, for example, you should still include assignments for “C” in your output.

Here is a sample output:

>>> deduce("((A and B) or not C) and (C or B)")
ABC

Challenge Assignment

Write a program in python or java that takes as input a string that consists of a single predicate
involving variables whose names consist of capital letters (for example “CAR”, “X”, and “UNI-
CORN?”, are all valid variable names), the operators ‘and’, ‘or’, and ‘not’, as well as parentheses.
Your program should allow for any number of variables (not just 3, as in the example). Your
program should output a list of assignments of of the variables such that the predicate in the input
is true. The output should be formatted in a way that is easy to read, as in the example below
(although you are free to format differently).

Here is a sample output:

>>> deduce (" ((CAR and X) or not UNICORN) and (UNICORN or X)")
CAR X UNICORN

T TT
T TF
F TF



