
Recurrence Relations

Let 𝑇(𝑛) be the number of strings in {0,1,2}+ that do NOT
contain two consecutive zeros. Write a recurrence relation
for 𝑇(𝑛).

Recurrence with an Algorithm

Solution

(a) D(v, u, V,E) ⌘ 9w 2 V : w 6= v ^ w 6= u ^ {w, u} 2 E ^ {w, v} 2 E

(b) R(v, (V,E)) ⌘ v 2 V ^ 8w 2 V, deg(w) � deg(v)

(c) W (V,E) ⌘ 9v 2 V : ¬9u 2 V : {u, v} 2 E

(d) M(V,E) ⌘ 9v 2 V : deg(v) = |V |� 1

(e) T (V,E) ⌘ 9k 2 N [{0} : 8v 2 V, deg(v) = k

(f) K(V,E) ⌘ 8v 2 V, 9k 2 N : deg(v) = 2k

4. What is a recurrence relation for this algorithm? Evaluate the recurrence relation using
iterative method, and if possible, master method.

Algorithm 1: MergeSort(C, n)
Input : Array of C of length n (where n is a power of 2)
Output: Sorted array containing all elements of C

1 if n==1 then
2 return C;
3 end
4 A=MergeSort(C[1 : n/2], n/2);
5 B=MergeSort(C[n/2 + 1 : n/2], n/2);
6 pA = 1;
7 pB = 1;
8 Increase length of A and B by 1 each, and set final element of each array to 1;
9 for k = 1 to n do

10 if A[pA] < B[pB] then
11 C[k] = A[pA];
12 pA+ = 1;

13 else
14 C[k] = B[pB];
15 pB+ = 1;

16 end

17 end

Solution We have that for the base case: T (1) = O(1). For the recursive step, we see
T (n) = 2T (n/2) +O(n).

Using the iterative method,

k = 1T (n) = 2T (n/2) +O(n)

k = 2T (n) = 2(2T (n/4) +O(n/2)) +O(n) = 4T (n/4) + 2O(n)

k = 3T (n) = 4(2T (n/8) +O(n)) + (2 + 1)O(n) = 8T (n/8) + 3O(n)

...

k T (n) = 2kT (n/2k) +O(n)k (6)

3

• Create a recurrence
relation for the runtime of
MergeSort, and evaluate
using the iterative method.

Indicator Random Variables

Consider an ordered list of the elements {1,2,3, … , 𝑛}. An inversion is
a pair (𝑖, 𝑗) where 𝑖 < 𝑗 but 𝑗 precedes 𝑖 in the list. For example if we
consider the ordered list 3,1,4,2 of the elements {1,2,3,4}, there are
3 inversions: 1,3 , 2,3 , 2,4 . But for example 1,2 is not inverted.
If an ordering is chosen with equal probability from among all possible
orderings, what is the average number of inversions?
1. What is the sample space and key random variable?
2. Break key random variable into sum of indicator random variables
3. Use linearity of expectation.
4. Use property of indicator random variables to evaluate terms in

the sum, and add everything up.

Graph Pseudocode
Write pseudocode to determine if a graph has an edge (u,v) but not
(v,u). In other words, is the graph directed? You can choose either
Adjacency Matrix or Adjacency List…but think about which is easier
before you start! What is the runtime of your algorithm?

Probability of an Event:
How should you calculate the probability of an event it
• All elements of the sample space are equally likely?
• If elements of the sample space are not equally likely?

Recurrence Relation Solution
Let 𝑇(𝑛) be the number of strings in {0,1,2}+ that do NOT contain two consecutive
zeros. Write a recurrence relation for 𝑇(𝑛).

3 options: _ _ _ _ _ 1 or _ _ _ _ _ 2 or _ _ _ _ _ 0
• If end in 1 or 2, need there to not be consecutive zeros in the first n-1 positions.

There are 𝑇(𝑛 − 1) ways of doing this for each.
• If end in 0, we need the second to last digit to be a 1 or 2. Otherwise we have two

consecutive 0’s. Then for the remaining n-2 digits, we need there to be no two
consecutive 0’s. There are 𝑇 𝑛 − 2 ways of doing this. So using the product rule,
there are 2𝑇 𝑛 − 2 ways.

• Using the sum rule:𝑇 𝑛 = 2 T n − 1 + T n − 2
Need two base cases to avoid falling off the ladder: 𝑇 1 = 3, 𝑇 2 = 8.

Recurrence with an Algorithm Solution

Solution

(a) D(v, u, V,E) ⌘ 9w 2 V : w 6= v ^ w 6= u ^ {w, u} 2 E ^ {w, v} 2 E

(b) R(v, (V,E)) ⌘ v 2 V ^ 8w 2 V, deg(w) � deg(v)

(c) W (V,E) ⌘ 9v 2 V : ¬9u 2 V : {u, v} 2 E

(d) M(V,E) ⌘ 9v 2 V : deg(v) = |V |� 1

(e) T (V,E) ⌘ 9k 2 N [{0} : 8v 2 V, deg(v) = k

(f) K(V,E) ⌘ 8v 2 V, 9k 2 N : deg(v) = 2k

4. What is a recurrence relation for this algorithm? Evaluate the recurrence relation using
iterative method, and if possible, master method.

Algorithm 1: MergeSort(C, n)
Input : Array of C of length n (where n is a power of 2)
Output: Sorted array containing all elements of C

1 if n==1 then
2 return C;
3 end
4 A=MergeSort(C[1 : n/2], n/2);
5 B=MergeSort(C[n/2 + 1 : n/2], n/2);
6 pA = 1;
7 pB = 1;
8 Increase length of A and B by 1 each, and set final element of each array to 1;
9 for k = 1 to n do

10 if A[pA] < B[pB] then
11 C[k] = A[pA];
12 pA+ = 1;

13 else
14 C[k] = B[pB];
15 pB+ = 1;

16 end

17 end

Solution We have that for the base case: T (1) = O(1). For the recursive step, we see
T (n) = 2T (n/2) +O(n).

Using the iterative method,

k = 1T (n) = 2T (n/2) +O(n)

k = 2T (n) = 2(2T (n/4) +O(n/2)) +O(n) = 4T (n/4) + 2O(n)

k = 3T (n) = 4(2T (n/8) +O(n)) + (2 + 1)O(n) = 8T (n/8) + 3O(n)

...

k T (n) = 2kT (n/2k) +O(n)k (6)

3

• Create a recurrence
relation for the runtime of
MergeSort, and evaluate
using the iterative method.

• 𝑇 𝑛 = 𝑂 𝑛 + 2𝑇 +
:

, 𝑇 1 = 𝑂(1)
• Using iterative method, pattern is
𝑇 𝑛 = 2;𝑇 +

:<
+ 𝑂 𝑛𝑘 . Plug in 𝑘 = log: 𝑛 to get

𝑇 𝑛 = 𝑛 + 𝑂(𝑛 log: 𝑛) = 𝑂(𝑛 log: 𝑛)

Indicator Random Variables Solution

1. What is the sample space and key random variable?
• Sample space is set of 𝑛! possible permutations of 𝑛 elements. Random variable 𝑋 is

the number of inversions in a single permutation
2. Break key random variable into sum of indicator random variables
• Let 𝑋CD take value 1 if there is an inversion between 𝑖, 𝑗, and 0 else. Then 𝑋 = ∑CD 𝑋CD

3. 𝐸 𝑋 = ∑CD 𝐸[𝑋CD]
4. 𝐸 𝑋 = ∑CD Pr[𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑖, 𝑗]. Any two elements are equally likely to be

inverted or not! So Pr 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑖, 𝑗 = T
: .And hence

𝐸 𝑋 =U
CD

𝐶(𝑛, 2)/2 = 𝑛(𝑛 − 1)/4

Graph Pseudocode Solution
Write pseudocode to determine if a graph has an edge (u,v) but not
(v,u). In other words, is the graph directed? You can choose either
Adjacency Matrix or Adjacency List…but think about which is easier
before you start! What is the runtime of your algorithm?

Use Adjacency Matrix for 𝐺 = (𝑉, 𝐸), because just need to check
opposite sides of the diagonal. This approach uses 𝑂(|𝑉|:) time.
• For 𝑢 ∈ 𝑉:
o For 𝑣 ∈ 𝑉:

q If 𝐴[𝑢, 𝑣] does not equal 𝐴[𝑣, 𝑢] return True

Probability of an Event Solution
How should you calculate the probability of an event it
1. All elements of the sample space are equally likely?
2. If elements of the sample space are not equally likely?

1. Count the number of elements in the event and divide by the
number of elements in the sample space.

2. Use a tree to calculate the probability of different elements of the
sample space.Add up the probability of all of the elements in the
event.

