Direct Proof

Use a direct proof to show:

For all $a, b, c \in \mathbb{Z}$, if a | b and b | c, then a | c. (leave proof on board)

If finish, please sit and work on proving: -If $n \in \mathbb{Z}$ is even, then n^2 is even. -If $n \in \mathbb{Z}$ and $n^2 | n$, then $n \in \{-1,0,1\}$

Contrapositive

Use a contrapositive proof to show

If a^2 is not divisible by 4, then a is odd.

If finish, please sit and work on proving: -For every prime number p, either p = 2 or p is odd