(CS200 - Final Review

. Let T'(n) be the number of strings in {0, 1,2}" that do not contain two consecutive zeros.
Write a recurrence relation for 7'(n)

. Let [n] = {1,2,3,...,n}. Given a permutation of the elements of [n], an inversion is an
ordered pair (7,7) with 4,5 € [n], such that i < j, but j precedes i in the permutation. For
instance, consider the set [5], and the permutation (3,5,1,4,2) - then there are six inversions
in this permutation:

(1,3),(1,5),(2,3),(2,4),(2,5), (4,5). (1)

If a permutation is chosen uniformly at random from among all permutations, what is the
expected number of inversions? Use our 5 step process:

b

(a) What is the sample space and what is the random variable that we care about?
(b)
(c) Use linearity of expectation

)

)

Break up the main random variable into a weighted sum of indicator random variables.

(d) Use property of expected value of indicator random variables.
(e) Add up the terms in the sum to get the final answer

(Hint - given, for example, {2,6} € [8], is it more likely to get a permuation where 2 is before
6, or 6 is before 27)

. In the following, you may assume that the graph G = (V, E) is undirected and does not have
self loops or multi-edges. Let deg(v) be the degree of a vertex v.

(a) [3 points] D(v,u,(V, E)) = In the graph (V, E) there is a path of length 2 from vertex
v to vertex u.
(b) [3 points] R(v, (V, E)) = v is the vertex with the smallest degree in the graph (V, E)

(c) [3 points] W(V, E) = There is a vertex in the graph (V, E) that is not connected to
any other vertices.

(d) [3 points] M(V,E) = There is a vertex in the graph (V, E) that is connected to all
other vertices.

(e) [3 points] T(V, E) = All vertices in the graph (V, E) have the same degree.
(f) [3 points] K(V, E) = All vertices in the graph (V| E) have even degree.



4. What is a recurrence relation for this algorithm? Evaluate the recurrence relation using
iterative method, and if possible, master method.

Algorithm 1: MergeSort(C,n)
Input : Array of C of length n (where n is a power of 2)
Output: Sorted array containing all elements of C
if n==1 then
return C
end
A=MergeSort(C[1 : n/2],n/2);
B=MergeSort(C[n/2 +1:n/2],n/2);
pa=1
pe=1;
Increase length of A and B by 1 each, and set final element of each array to oo;
for k=1 ton do
if A[pa] < B[pp] then
Clk] = Alpal;
pa+=1;
else
C[k] = Blpal;
pe+=1;
end

© W N O A W N

[T e T S~ S =S G
S U R W N = O

end

[uny
EN|



