Goals

- Write a strong inductive proof
- Identify when multiple cases are needed

$\operatorname{Sum2}(A)$

```
Input: List A of integers
 Output: Sum of the elements of A.
1 l = length(A);
 // Base Case
\mathbf{2} if l equals 1 then
  return A[1];
4 else
   // Recursive step
  mid = l/2, rounded to next lowest integer if not an integer;
  return Sum(A[1:mid]) + SumA[mid+1:l];
   // A[a:b] is a list of ath to bth elements of A
       inclusive.
7 end
```

Proof By Strong Induction

Prove it takes n-1 breaks to reduce an n-square chocolate bar to n individual pieces.

(Inductive step: Let $k \ge$ __.Assume for strong induction that P(j) is true for all j such that ____.)