
CS200 - Problem Set 8

1. Consider the generic graph search algorithm we discussed in class. Let s be the starting
vertex. Prove that vertex v is visited by the algorithm if and only if there is a path from s to
v in the graph.

2. In the NFL (National Football League), 10 players from each team are chosen each week to
have a drug test. These choices are supposed to be random. Last year, a player named Eric
Reid accused the league of over-testing him as retaliation for speaking out against the league,
particularly for supporting players’ right to kneel during the national anthem.

Assume there are 72 people on a team, 11 weeks in the season, 10 people are chosen from
each team each week for a drug test, and each player is chosen with equal probability each
week. Let Ei be the event that includes all elements of the sample space where a single player
“Z” is chosen to be drug tested exactly i times over the course of the season. Determine
Pr(Ei) for each i from 0 to 5. Then calculate the probability that player Z has at least 6
tests. (You can use python or mathematica or wolfram alpha or another tool to help do these
calculations.

(
n
k

)
is often written as binom[n,k] or nchoosek(n,k) as a built-in function.)

Eric Reid was actually tested 6 times in 11 weeks. Please comment.

3. Let G be the following graph, and let AG be an adjacency list representation of the G with
the adjacency list for each vertex in alphabetical order.

CS 200 Assignment 8 due: 1:30pm, 30 Apr 15

Reading

Graphs are covered in chapter 11 of Mathematics for Computer Science.

Homework

Use as much scratch paper as you like, but please limit your submission to the answers, along with any assumptions
you may have made in producing them.

At no point in this course should you need to resort to a calculator: an expression concisely describing how
you would calculate the answer is always su�cient.

1. Starting at node a, perform both breadth-first search and depth-first search on the following graph. Use
alphabetical order to determine the order in which to visit otherwise equivalent nodes.

a

b

c

d

e

f

g

h

i

j

k

l

For each graph-search algorithm, give the sequence of nodes visited. (20 points each)

2. How many di↵erent undirected graphs are there for a set of n vertices? That is, how many ways can you
assign edges among n vertices? You don’t need to prove it, but give significant intuition justifying your
answer. (20 points)

3. How many di↵erent directed graphs are there for a set of n vertices? Again, justify your answer. (20 points)

4. In class, I mentioned in passing that a connected, acyclic (undirected) graph with n vertices necessarily has
n � 1 edges (and, if you were paying attention, I gave a significant hint as to how one might prove it).
Prove it. (40 points)

Submission Instructions

Either typeset your solutions (ideally using LATEX) or handwrite them extremely legibly, and hand them in at the
beginning of class on 30 April.

1

Consider the following slight variation to breadth-first-search:

1

Algorithm 1: BFSish(A, s)
Input : Adjacency list A for a graph (V,E) and vertex s
Output: An integer array L of length |V |.
// Initialize array of explored vertices and array L

1 X[v] = 0 ∀v ∈ V ;
2 L[v] =∞ ∀v ∈ V ;
3 X[s] = 1;
4 L[s] = 0;
// Initialize Queue Q

5 Q = {};
6 Add s to Q;
7 while Q is not empty do
8 v = Q.pop;
9 for w ∈ A[v] do

10 if X[w] = 0 then
11 X[w] = 1;
12 Add w to Q;
13 L[w] = L[v] + 1;

14 end

15 end

16 end
17 return L

(a) In what order does BFSish(AG, a) explore the nodes of the graph G? (Remember lists
of the adjacency list representation are in alphabetical order, so the for loop in line 9
will look at vertices in alphabetical order.)

(b) What are the values in the array L that is returned when BFSish(AG, a) is implemented?

(c) Considering your answer to part b, what does it seem like the algorithm is doing? What
is the meaning of L? Think about the relationship between a, b, and L[b].

4. (a) Let T (n) be the number of bit strings of length n that have two consecutive zeros. (A
bit string of length n is an element of {0, 1}n.) Consider a recurrence relation for T (n).

i. What is the recurrence part of the recurrence relation?

ii. What is the base case(s) for the recurrence relation?

iii. Use the recurrence relation to calculate T (5).

(b) Consider the following variant to the Tower of Hanoi. We start with all disks on peg 1
and want to move them to peg 3, but we cannot move a disk directly between peg 1 and
peg 3. Instead, we can only move disks from peg 1 to peg 2, or from peg 2 to peg 3.
So in the case of n = 1 disk, we have to first move the disk from 1 to 2, and then from
2 to 3. Let T (n) be the number of moves required to shift a stack of n disks from peg
1 to peg 3, if as usual, we can not put a larger disk on top of a smaller disk. Consider
creating a recurrence relation for T (n).

i. What is the recurrence part of the recurrence relation? (Explain)

2

ii. What is the base case for the recurrence relation?

iii. Use the iterative method to solve for T (n) and give a big-O bound on T (n).

5. We study the following algorithm in CS302.

Algorithm 2: dynamic(n)
Input: An n× 3 array L containing natural numbers.

A,B ∈ N, a rectangular array Q of size A×B with all
0’s

1 for k=1 to A do
2 for j=1 to B do
3 for q=1 to k-1 do
4 if Q[k, j] < Q[q, j] + Q[k − q, j] then
5 Q[k, j] := Q[q, j] + Q[k − q, j];
6 end

7 end
8 for r=1 to j-1 do
9 if Q[k, j] < Q[k, r] + Q[k, j − r] then

10 Q[k, j] := Q[q, j] + Q[k − q, j];
11 end

12 end
13 for i=1 to n do
14 if (k = L[i, 1] and j = L[i, 2]) or

(k = L[i, 2] and j = L[i, 1]) then
15 if Q[k, j] < L[i, 3] then
16 Q[k, j] := L[i, 3];
17 end

18 end

19 end

20 end

21 end
22 return Q[A,B];

Last PSet, we found that an expression for the worst-case runtime is:

C1 +
A∑

k=1

 B∑
j=1

k−1∑
q=1

C2 +

j−1∑
r=1

C3 +

n∑
i=1

C4

 (1)

(a) Analyze the expression from part a by first evaluating all of the sums, and then put a
big-O bound on your simplified expression.

(b) Explain how you can bound the asymptotic runtime without using summation notation,
but instead using a rough worst-case analysis.

6. Suppose you have a weighted coin such that the probability of heads is 0.3 and the probability

3

of tails is 0.7. In this problem, you will calculate the probability of getting at least 3 heads,
if you flip the coin 10 times.

(a) First describe the tree (don’t actually write it out!) that you can use to calculate the
relevant probabilities. Use as many of the tree vocabulary words we learned in class as
possible in your description.

(b) Next use the properties of this tree to calculate the probability of getting at least 3
heads, if you flip the coin 10 times.

7. Consider rolling 5 dice. Let Xi,j be an indicator random variable that takes value 1 if the ith
di has outcome j (and takes value 0 otherwise).

(a) What is the sample space? What is its size?

(b) Let X be the random variable that is the sum of all of the values shown on the dice. If
the outcome of the rolls is s = (4, 2, 4, 5, 1), what is X(s)? What is X3,4(s)? What is
X4,3(s)?

(c) Write X in terms of a weighted sum of the variables Xi,j .

(d) What is E[Xi,j]?

(e) Use linearity of expectation to determine the average value of the sum of all values shown
on the dice.

8. [This problem is moved to the next problem set.] Suppose a group of n people each
order a different flavor of ice cream at an ice cream shop. Suppose the server didn’t keep
track of who ordered which flavor, and just handed the ice cream out randomly.

(a) Let X a random variable that is the number of people who got handed the correct flavor.
Let Xi be the indicator random variable that takes value 1 if person i gets the correct
flavor (and 0 otherwise.) Write X in terms of a sum of the Xi.

(b) Use linearity of expectation to determine the average number of people who get the
correct flavor.

9. How long did you spend on this homework?

4

