
Announcements

• Please bring laptops on Wednesday and Friday. (Can 
check out from Davis.)

• Programming Assignment due Tuesday
• Overall reflection due Thursday (see instructions)
• Exam Content: Fully cumulative. Emphasis on most recent 

topics.
• 2-sided cheat sheet – no other resources



Review Topics

• Recurrence Relations (strings)
• Recurrence relations (pseudocode)
• Indicator Random Variables
• Graph Pseudocode
• Equivalence Relations



Recurrence Relations

Let 𝑇(𝑛) be the number of strings in {0,1,2}+ that do NOT 
contain two consecutive zeros. Write a recurrence relation 
for 𝑇(𝑛).



Solution

(a) D(v, u, V,E) ⌘ 9w 2 V : w 6= v ^ w 6= u ^ {w, u} 2 E ^ {w, v} 2 E

(b) R(v, (V,E)) ⌘ v 2 V ^ 8w 2 V, deg(w) � deg(v)

(c) W (V,E) ⌘ 9v 2 V : ¬9u 2 V : {u, v} 2 E

(d) M(V,E) ⌘ 9v 2 V : deg(v) = |V |� 1

(e) T (V,E) ⌘ 9k 2 N [ {0} : 8v 2 V, deg(v) = k

(f) K(V,E) ⌘ 8v 2 V, 9k 2 N : deg(v) = 2k

4. What is a recurrence relation for this algorithm? Evaluate the recurrence relation using

iterative method, and if possible, master method.

Algorithm 1: MergeSort(C, n)

Input : Array of C of length n (where n is a power of 2)

Output: Sorted array containing all elements of C

1 if n==1 then

2 return C;

3 end

4 A=MergeSort(C[1 : n/2], n/2);

5 B=MergeSort(C[n/2 + 1 : n/2], n/2);

6 pA = 1;

7 pB = 1;

8 Increase length of A and B by 1 each, and set final element of each array to 1;

9 for k = 1 to n do

10 if A[pA] < B[pB] then

11 C[k] = A[pA];

12 pA+ = 1;

13 else

14 C[k] = B[pB];

15 pB+ = 1;

16 end

17 end

Solution We have that for the base case: T (1) = O(1). For the recursive step, we see

T (n) = 2T (n/2) +O(n).

Using the iterative method,

k = 1T (n) = 2T (n/2) +O(n)

k = 2T (n) = 2(2T (n/4) +O(n/2)) +O(n) = 4T (n/4) + 2O(n)

k = 3T (n) = 4(2T (n/8) +O(n)) + (2 + 1)O(n) = 8T (n/8) + 3O(n)

.

.

.

k T (n) = 2
k
T (n/2

k
) +O(n)k (6)
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• Create a recurrence relation for the 
runtime of MergeSort, and evaluate using 
the iterative method and the tree method 
(use formula).



Indicator Random Variables
Consider an ordered list containing the elements 1,2,3, … , 𝑛 with no 
repeats.  An inversion is a pair (𝑖, 𝑗) where 𝑖 < 𝑗 but 𝑗 precedes 𝑖 in the 
list. For example if we consider the ordered list 3,1,4,2 of the 
elements there are 3 inversions: 1,3 , 2,3 , {2,4}.
If an ordering is chosen with equal probability from among all possible 
orderings, what is the average number of inversions? 
1. What is the sample space and random variable of interest?
2. Write rand. variable as weighted sum of indicator rand. variables
3. Use linearity of expectation and property of indicator rand. 

variables to calculate the expectation.



Graph Pseudocode
Given a graph 𝐺 = (𝑉, 𝐸) and a vertex 𝑣 ∈ 𝑉, write pseudocode to 
determine if 𝐺 is a star centered at 𝑣.  A star is a graph with one 
central vertex that is connected to every other vertex, but aside from 
the central vertex, no other two vertices are connected. You can 
choose either Adjacency Matrix or Adjacency List…but think about 
which is easier before you start! What is big-O runtime of your 
algorithm? (For extra practice, write code using the other graph data 
structure.)



Equivalence Relation(?)

Either prove it is an equivalence relation, or prove it is not an 
equivalence relation. If it is, describe the equivalence classes

Let 𝑅 ⊆ ℤ×ℤ, where 𝑅 = 𝑎, 𝑏 : 2 𝑎 − 𝑏

Let 𝑅 ⊆ ℤ×ℤ, where 𝑅 = { 𝑎, 𝑏 : (𝑎 − 𝑏)|2}



Recurrence Relation Solution
Let 𝑇(𝑛) be the number of strings in {0,1,2}+ that do NOT contain two consecutive 
zeros. Write a recurrence relation for 𝑇(𝑛).

3 options: _ _ _ _ _ 1 or _ _ _ _ _ 2 or _ _ _ _ _ 0
• If end in 1 or 2, need there to not be consecutive zeros in the first n-1 positions. 

There are 𝑇(𝑛 − 1) ways of doing this for each.
• If end in 0, we need the second to last digit to be a 1 or 2. Otherwise we have two 

consecutive 0’s. Then for the remaining n-2 digits, we need there to be no two 
consecutive 0’s. There are 𝑇 𝑛 − 2 ways of doing this. So using the product rule, 
there are 2𝑇 𝑛 − 2 ways.

• Using the sum rule: 𝑇 𝑛 = 2 T n − 1 + T n − 2
Need two base cases to avoid falling off the ladder: 𝑇 1 = 3, 𝑇 2 = 8.



Recurrence with an Algorithm Solution

Solution

(a) D(v, u, V,E) ⌘ 9w 2 V : w 6= v ^ w 6= u ^ {w, u} 2 E ^ {w, v} 2 E

(b) R(v, (V,E)) ⌘ v 2 V ^ 8w 2 V, deg(w) � deg(v)

(c) W (V,E) ⌘ 9v 2 V : ¬9u 2 V : {u, v} 2 E

(d) M(V,E) ⌘ 9v 2 V : deg(v) = |V |� 1

(e) T (V,E) ⌘ 9k 2 N [ {0} : 8v 2 V, deg(v) = k

(f) K(V,E) ⌘ 8v 2 V, 9k 2 N : deg(v) = 2k

4. What is a recurrence relation for this algorithm? Evaluate the recurrence relation using

iterative method, and if possible, master method.

Algorithm 1: MergeSort(C, n)

Input : Array of C of length n (where n is a power of 2)

Output: Sorted array containing all elements of C

1 if n==1 then

2 return C;

3 end

4 A=MergeSort(C[1 : n/2], n/2);

5 B=MergeSort(C[n/2 + 1 : n/2], n/2);

6 pA = 1;

7 pB = 1;

8 Increase length of A and B by 1 each, and set final element of each array to 1;

9 for k = 1 to n do

10 if A[pA] < B[pB] then

11 C[k] = A[pA];

12 pA+ = 1;

13 else

14 C[k] = B[pB];

15 pB+ = 1;

16 end

17 end

Solution We have that for the base case: T (1) = O(1). For the recursive step, we see

T (n) = 2T (n/2) +O(n).

Using the iterative method,

k = 1T (n) = 2T (n/2) +O(n)

k = 2T (n) = 2(2T (n/4) +O(n/2)) +O(n) = 4T (n/4) + 2O(n)

k = 3T (n) = 4(2T (n/8) +O(n)) + (2 + 1)O(n) = 8T (n/8) + 3O(n)

.

.

.

k T (n) = 2
k
T (n/2

k
) +O(n)k (6)
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• Create a recurrence 
relation for the runtime of 
MergeSort, and evaluate 
using the iterative method.

• 𝑇 𝑛 = 𝑂 𝑛 + 2𝑇 +
G

, 𝑇 1 = 𝑂(1)
• Using iterative method, pattern is 
𝑇 𝑛 = 2H𝑇 +

GI
+ 𝑂 𝑛𝑘 . Plug in 𝑘 = logG 𝑛 to get 

𝑇 𝑛 = 𝑛 + 𝑂(𝑛 logG 𝑛) = 𝑂(𝑛 logG 𝑛)



Indicator Random Variables Solution

1. What is the sample space and key random variable?
• Sample space is set of 𝑛! possible permutations of 𝑛 elements. Random variable 𝑋 is 

the number of inversions in a single permutation
2. Break key random variable into sum of indicator random variables
• Let 𝑋PQ take value 1 if there is an inversion between 𝑖, 𝑗, and 0 else. Then 𝑋 = ∑PQ 𝑋PQ, 

where the sum is over all unordered pairs of vertices where 𝑖 ≠ 𝑗.
3. 𝐸 𝑋 = ∑PQ 𝐸[𝑋PQ] (using linearity of expectation)
𝐸 𝑋 = ∑PQ Pr[𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑖, 𝑗].  (using property of ind. rand. vars.)
Any two elements are equally likely to be inverted or not! So 
Pr 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑖, 𝑗 = _

G
.And hence 

𝐸 𝑋 =`
PQ

1/2 =
𝐶 𝑛, 2
2

= 𝑛(𝑛 − 1)/4



Graph Pseudocode Solution
Input: Adjacency List A, vertex v:
• If (length of 𝐴 𝑣 ) ≠ 𝑉 − 1: return False.
• For 𝑢 ∈ (𝑉 − 𝑣 ):

q If (length of 𝐴[𝑢]) ≠ 1) ∨ (𝐴[𝑢, 1] ≠ 𝑣): return False
• Return True

Runtime: O(|V|)



Equivalence Relation(?)
• Let 𝑅 ⊆ ℤ×ℤ, where 𝑅 = 𝑎, 𝑏 : 2 𝑎 − 𝑏
• Reflexive: Let 𝑎 ∈ ℤ.Then 𝑎 − 𝑎 = 0, and 2|0, since 2×0 = 0.
• Symmetric: Let 𝑎, 𝑏 ∈ ℤ.Assume 𝑎, 𝑏 ∈ 𝑅.Then ∃𝑐 ∈ ℤ: 2𝑐 = 𝑎 −
𝑏. But then 2 −𝑐 = 𝑏 − 𝑎, so 2|(𝑏 − 𝑎), and so 𝑏 − 𝑎 ∈ 𝑅.

• Transitive. Let 𝑎, 𝑏, 𝑐 ∈ ℤ.Assume 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑅.Then 
∃𝑓, 𝑑 ∈ ℤ: (2𝑓 = 𝑎 − 𝑏) ∧ (2𝑑 = 𝑏 − 𝑐). Adding these two equations, 
we get 2 𝑓 + 𝑑 = 𝑎 − 𝑐, so 𝑎, 𝑐 ∈ 𝑅.

• Thus it is an equivalence relation. An equivalence classes is the set of 
even numbers.

• Let 𝑅 ⊆ ℤ×ℤ, where 𝑅 = { 𝑎, 𝑏 : (𝑎 − 𝑏)|2}. Not transitive: 3,1 ∈
𝑅 and 5,3 ∈ 𝑅,but 5,1 ∉ 𝑅.


