CS200 - Worksheet 1

Use the following definitions to answer the questions below (image taken from *Discrete Mathematics*, an Open Introduction by Levin):

Set Theory Notation	
{,}	We use these braces to enclose the elements of a set. So $\{1, 2, 3\}$ is the set containing 1, 2, and 3.
:	$\{x : x > 2\}$ is the set of all x such that x is greater than 2.
E	$2 \in \{1, 2, 3\}$ asserts that 2 is an element of the set $\{1, 2, 3\}$.
∉	$4 \notin \{1, 2, 3\}$ because 4 is not an element of the set $\{1, 2, 3\}$.
⊆	$A \subseteq B$ asserts that <i>A</i> is a subset of <i>B</i> : every element of <i>A</i> is also an element of <i>B</i> .
C	$A \subset B$ asserts that A is a proper subset of B : every element of A is also an element of B , but $A \neq B$.
\cap	$A \cap B$ is the intersection of A and B : the set containing all elements which are elements of both A and B .
U	$A \cup B$ is the union of A and B : is the set containing all elements which are elements of A or B or both.
×	$A \times B$ is the Cartesian product of A and B : the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.
\	$A \setminus B$ is A set-minus B : the set containing all elements of A which are not elements of B .
\overline{A}	The complement of A is the set of everything which is not an element of A .

- |*A*| The **cardinality (or size) of** *A* is the number of elements in *A*.
- 1. Describe the following sets in roster notation (list the first few elements). If the set is also "famous" give its symbol.
 - (a) $A = \{2^x : x \in \mathbb{N}\}$

- (b) $B = \{x : x \text{ is even and } x \in \{1, 3, 5\}\}$
- (c) $C = \{x \ge 0 : x \text{ is even or } x \text{ is odd}\}$

Solution

- (a) $A = \{1, 2, 4, 8, 16, ...\}$ (b) $B = \{\} = \emptyset$ (c) $C = \{0, 1, 2, 3, 4, ...\} = \mathbb{N}$
- 2. Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$
 - (a) What is $|A \times B|$?
 - (b) Is $A \subset B$?
 - (c) Is $A \subseteq B$?
 - (d) Is $A \subset A$?
 - (e) What is $A \setminus B$?
 - (f) What is $A \cup B$?
 - (g) What is $A \cap B$?

Solution

- (a) $A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\},$ so $|A \times B| = |A| \times |B| = 6.$
- (b) Yes. Both 1 and 2 and elements of B.
- (c) Yes. Both 1 and 2 and elements of B.
- (d) No. \subset can only be used when the two sets are not equal.
- (e) Ø.
- (f) B. B already contains all the elements of A, so adding those elements doesn't do anything
- (g) A. The elements of A are in both. Only $3 \in B$ but $2 \notin A$.
- 3. Let A and B be sets with |A| = |B| such that $|A \cup B| = 7$ and $|A \cap B| = 3$. What is |A|? Explain.

Solution $7 = |A \cup B| = |A \cap B| + |A \setminus B| + |B \setminus A|$. But $|A \setminus B| = |B \setminus A|$ because |A| = |B|, so $|A \setminus B| = 2$ and $|A| = |A \cap B| + |A \setminus B| = 5$.

4. Find sets A and B such that $A \subset B$ and $A \in B$.

Solution For example, $A = \{1, 2\}, B = \{1, 2, 3, 4, \{1, 2\}, 5\}.$